The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm.

نویسندگان

  • Sabrina Tazerart
  • Laurent Vinay
  • Frédéric Brocard
چکیده

Rhythm generation in neuronal networks relies on synaptic interactions and pacemaker properties. Little is known about the contribution of the latter mechanisms to the integrated network activity underlying locomotion in mammals. We tested the hypothesis that the persistent sodium current (I(NaP)) is critical in generating locomotion in neonatal rodents using both slice and isolated spinal cord preparations. After removing extracellular calcium, 75% of interneurons in the area of the central pattern generator (CPG) for locomotion exhibited bursting properties and I(NaP) was concomitantly upregulated. Putative CPG interneurons such as commissural and Hb9 interneurons also expressed I(NaP)-dependent (riluzole-sensitive) bursting properties. Most bursting cells exhibited a pacemaker-like behavior (i.e., burst frequency increased with depolarizing currents). Veratridine upregulated I(NaP), induced riluzole-sensitive bursting properties, and slowed down the locomotor rhythm. This study provides evidence that I(NaP) generates pacemaker activities in CPG interneurons and contributes to the regulation of the locomotor activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the mammalian locomotor CPG: insights from mistakes and perturbations.

A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-center rhythm generator (RG) and pattern formation (PF) networks is reviewed. The model consists of interacting populations of interneurons and motoneurons described in the Hodgkin-Huxley style. Locomotor rhythm generation is based on a combination of intrins...

متن کامل

Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord.

The persistent sodium current (I(Na(P))) has been implicated in the regulation of synaptic integration, intrinsic membrane properties, and rhythm generation in many types of neurons. We characterized I(Na(P)) in commissural interneurons (CINs) in the neonatal (postnatal days 0-3) mouse spinal cord; it is activated at subthreshold potentials, inactivates slowly, and can be blocked by low concent...

متن کامل

Locomotor Pattern Generation in the Rodent Spinal Cord

The locomotor central pattern generator is a neural network in the spinal cord that can generate the basic motor pattern for locomotion in the absence of sensory feedback or rhythmic input from the brain. Most research in rodents has focused on hind limb movements: the hind limb CPG is located in lower thoracic and lumbar segments of the spinal cord. This network generates both the locomotor rh...

متن کامل

Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity.

Neuromodulators, such as substance P (SubP), play an important role in modulating many rhythmic activities driven by central pattern generators (e.g. locomotion, respiration). However, the mechanism by which SubP enhances breathing regularity has not been determined. Here, we used mouse brainstem slices containing the pre-Bötzinger complex to demonstrate, for the first time, that SubP activates...

متن کامل

Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.

Neurochemically induced membrane voltage oscillations and firing episodes in spinal excitatory interneurons expressing the HB9 protein (Hb9 INs) are synchronous with locomotor-like rhythmic motor outputs, suggesting that they contribute to the excitatory drive of motoneurons during locomotion. Similar to central pattern generator neurons in other systems, Hb9 INs are interconnected via electric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 34  شماره 

صفحات  -

تاریخ انتشار 2008